Impact of the input OSNR on data-driven optical fiber channel modeling

Author:

Ye Gao,Xiang Junjiang,Zhou Gai,Xiang MengORCID,Li JianpingORCID,Qin YuwenORCID,Fu SongnianORCID

Abstract

The data-driven approach is promising for computationally efficient modeling of optical fiber channels. Here, for the first time to our knowledge, we investigate the impact of the input optical signal-to-noise ratio (OSNR) on the accuracy of data-driven modeling for optical fiber channels, based on a conditional generative adversarial network (cGAN). Initially, considering a single span of 80 km of standard single mode fiber (SSMF), we vary the launched optical power for the ease of emulating both linear and nonlinear transmission scenarios. When the input OSNR of a root raised cosine (RRC)-shaped 16 quadrature amplitude modulation signal with a roll-off factor of 0.1 varies, we identify that there occurs an OSNR threshold for accurately modeling a single span of 80 km of SSMF in order to reach the normalized mean square error of less than 0.02 in relevance to the traditional split-step Fourier method. The OSNR thresholds are 19 dB and 21 dB, respectively, under scenarios of linear and nonlinear transmissions. Moreover, we verify that the OSNR threshold of accurate modeling is insensitive to both the modulation format and the RRC shaping of the input signal. Furthermore, we find that the cascaded use of cGAN well-trained for the single SSMF span is capable of modeling the multiple-span SSMF transmission in the case that the input OSNR threshold of 22.6 dB is satisfied. We believe that the identification of the OSNR threshold for data-driven optical fiber channel modeling is useful for the accurate and efficient emulation of long-haul fiber optical transmission.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Guangdong Introducing Innovative and Entrepreneurial Teams of “The Pearl River Talent Recruitment Program”

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3