Affiliation:
1. Chinese Academy of Sciences
Abstract
Post-compression can effectively further improve the peak power of laser pulses by shortening the pulse duration. Which has been investigated in various ranges of energy and central wavelength. However, the spatial intensity profile of high-peak-power laser pulses is generally inhomogeneous due to pump lasers, imperfect optical components, and dust in the optical layout. In post-compression, the B-integral is proportional to intensity, and wavefront distortions are induced in the spectral broadening stage, leading to a decrease in focusing intensity. Moreover, the beam intensity may be strongly modulated and beam inhomogeneity will be intensified in this process, causing damage to optical components and limiting the achievement of high peak power enhancement. In this study, to address these challenges, the laser pulse is first smoothed by introducing spatial dispersion using prism pairs or asymmetric four-grating compressors, and then the smoothed pulse is used for post-compression. The simulation results indicate that this method can effectively remove hot spots from laser pulses and maintain high peak power enhancement in post-compression.
Funder
State Key Laboratory of High Field Laser Physics
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献