Topological edge states in a photonic Floquet insulator with unpaired Dirac cones

Author:

Zhong Hua,Kartashov Yaroslav V.1ORCID,Li Yongdong,Li Ming2,Zhang YiqiORCID

Affiliation:

1. Russian Academy of Sciences

2. Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences

Abstract

Topological insulators are most frequently constructed using lattices with specific degeneracies in their linear spectra, such as Dirac points. For a broad class of lattices, such as honeycomb ones, these points and associated Dirac cones generally appear in non-equivalent pairs. Simultaneous breakup of the time-reversal and inversion symmetry in systems based on such lattices may result in the formation of the unpaired Dirac cones in bulk spectrum, but the existence of topologically protected edge states in such structures remains an open problem. Here a photonic Floquet insulator on a honeycomb lattice with unpaired Dirac cones in its spectrum is introduced that can support unidirectional edge states appearing at the edge between two regions with opposite sublattice detuning. Topological properties of this system are characterized by the nonzero valley Chern number. Remarkably, edge states in this system can circumvent sharp corners without inter-valley scattering even though there is no total forbidden gap in the spectrum. Our results reveal unusual interplay between two different physical mechanisms of creation of topological edge states based on simultaneous breakup of different symmetries of the system.

Funder

Natural Science Basic Research Program of Shaanxi Province

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Research Project of the Institute of Spectroscopy of the Russian Academy of Sciences

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3