Affiliation:
1. COMSATS Institute of Information Technology
Abstract
We theoretically investigate the effect of doped Er3+ ion concentration on the spin Hall effect (SHE) of light reflected from a Kretschmann-Raether (K-R) structure. In such a structure, an Er3+-doped yttrium aluminum garnet (YAG) crystal acts as the substrate. The excitation of surface plasmon resonance(SPR) leads to the enhancement of the spin splitting of the reflected beam in the resonance reflection dip. Due to the variation of electric dipole moment and energy level lifetime induced by Er3+ ion concentration, the spin-dependent transverse shift is sensitively dependent upon Er3+ ion concentration. Furthermore, under different concentrations of Er3+ ion, the intensity and detuning of the control field have different effects on the magnitude, sign and position of the transverse shift. More importantly, the photonic SHE can be significantly enhanced via choosing the suitable values of the control intensity and detuning at 15% Er3+ ion concentration. Therefore, our scheme may provide a basis for selecting suitable Er3+ ion concentration to enhance the SHE of light in future integrated systems.
Funder
National Natural Science Foundation of China
Science and Technology Research Project of Education Department of Hubei Province
Subject
Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献