Multiple-access relay stations for long-haul fiber-optic radio frequency transfer

Author:

Li Qi1ORCID,Hu Liang1ORCID,Zhang Jinbo1,Chen Jianping1,Wu Guiling1ORCID

Affiliation:

1. Shanghai Jiao Tong University

Abstract

We report on the realization of a long-haul radio frequency (RF) transfer scheme by using multiple-access relay stations (MARSs). The proposed scheme with independent link noise compensation for each fiber sub-link effectively solves the limitation of compensation bandwidth for long-haul transfer. The MARS can have the capability to share the same modulated optical signal for the front and rear fiber sub-links, simplifying the configuration at the repeater station and enabling the transfer system to have the multiple-access capability. At the same time, we for the first time theoretically model the effect of the MARS position on the fractional frequency instability of the fiber-optic RF transfer, demonstrating that the MARS position has little effect on system’s performance when the ratio of the front and rear fiber sub-links is around 1:1. We experimentally demonstrate a 1 GHz signal transfer by using one MARS connecting 260 and 280 km fiber links with the fractional frequency instabilities of less than 5.9 × 10−14 at 1 s and 8.5 × 10−17 at 10,000 s at the remote site and of 5.6 × 10−14 and 6.6 × 10−17 at the integration times of 1 s and 10,000 s at the MARS. The proposed scalable technique can arbitrarily add the same MARSs in the fiber link, which has great potential in realizing ultra-long-haul RF transfer.

Funder

National Natural Science Foundation of China

Zhejiang provincial Key Research and Development Program of China

Natural Science Foundation of Shanghai

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3