Affiliation:
1. Harbin Institute of Technology
2. ShanghaiTech University
Abstract
Both absorption and diffuse reflection can effectively suppress microwave backward reflection. However, the challenge of designing wideband absorptive elements with anti-phase reflection hinders the simultaneous working of the two principles. With aid of the wideband characteristic of bilateral complementary structure, we propose a strategy to design wideband absorptive elements with large reflection phase differences. For proof of concept, the proposed elements are arranged in a rectangular grid by optimizing scattering field distribution. The proposed diffusion metabsorber achieves over 20-dB scattering field reduction in the range of 8.5–20.3 GHz with good polarization stability and high angular insensitivity of up to
±
40
°
, which has been verified by real experiments. Furthermore, the proposed design strategy exhibits the potential to further reduce electromagnetic wave reflection, and the optical transparent characteristic is promising for window applications.
Funder
Key Project of National Natural Science Foundation of China
National Natural Science Foundation for Distinguished Young Scholars of China
Shanghai Pujiang Program
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献