Affiliation:
1. Dalian Minzu University
2. Wuhan Institute of Quantum Technology
Abstract
Metallic nanoparticle-over-mirror (NPOM) represents as a versatile plasmonic configuration for surface enhanced spectroscopy, sensing and light-emitting metasurfaces. However, experimentally identifying the high-order localized surface plasmon modes in NPOM, especially for the best plasmonic material silver, is often hindered by the small scattering cross-section of high-order plasmon modes and the poor reproducibility of the spectra across different NPOMs, resulted from the polyhedral morphology of the colloidal nanoparticles or the rough surface of deposited polycrystalline metals. In this study, we identify the high-order localized surface plasmon modes in silver NPOM by using differential reflection spectroscopy. We achieved reproducible single-particle absorption spectra by constructing uniform NPOM consisting of silver nanospheres, single-crystallized silver microplates, and a self-assembled monolayer of 1,10-decanedithiol. For comparison, silver NPOM created from typical polycrystalline films exhibits significant spectral fluctuations, even when employing template stripping methods to minimize the film roughness. Identifying high-order plasmon modes in the NPOM configuration offers a pathway to construct high-quality plasmonic substrates for applications such as colloidal metasurface, surface-enhanced Raman spectroscopy, fluorescence, or infrared absorption.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China