NMSCANet: stereo matching network for speckle variations in single-shot speckle projection profilometry

Author:

Li GenshenORCID,Zhou PeiORCID,Du Junlin1,Zhang Jianwei,Zhu JiangpingORCID

Affiliation:

1. CEC Anstec (Chengdu) Technology Co., Ltd.

Abstract

In single-shot speckle projection profilometry (SSPP), the projected speckle inevitably undergoes changes in shape and size due to variations such as viewing angles, complex surface modulations of the test object and different projection ratios. These variations introduce randomness and unpredictability to the speckle features, resulting in erroneous or missing feature extraction and subsequently degrading 3D reconstruction accuracy across the tested surface. This work strives to explore the relationship between speckle size variations and feature extraction, and address the issue solely from the perspective of network design by leveraging specific variations in speckle size without expanding the training set. Based on the analysis of the relationship between speckle size variations and feature extraction, we introduce the NMSCANet, enabling the extraction of multi-scale speckle features. Multi-scale spatial attention is employed to enhance the perception of complex and varying speckle features in space, allowing comprehensive feature extraction across different scales. Channel attention is also employed to selectively highlight the most important and representative feature channels in each image, which is able to enhance the detection capability of high-frequency 3D surface profiles. Especially, a real binocular 3D measurement system and its digital twin with the same calibration parameters are established. Experimental results imply that NMSCANet can also exhibit more than 8 times the point cloud reconstruction stability (Std) on the testing set, and the smallest change range in terms of Mean~dis (0.0614 mm - 0.4066 mm) and Std (0.0768 mm - 0.7367 mm) when measuring a standard sphere and plane compared to other methods, faced with the speckle size changes, meanwhile NMSCANet boosts the disparity matching accuracy (EPE) by over 35% while reducing the matching error (N-PER) by over 62%. Ablation studies and validity experiments collectively substantiate that our proposed modules and constructed network have made significant advancements in enhancing network accuracy and robustness against speckle variations.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Key Research and Development Project of Sichuan Province

The central government guides local funds for science and technology development

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3