Single-shot measurement of wavelength-resolved state of polarization dynamics in ultrafast lasers using dispersed division-of-amplitude

Author:

Wu Qiang,Gao Lei,Cao YulongORCID,Wabnitz Stefan12ORCID,Chang Zhenghu,Liu Ai,Huang Jingsheng,Huang Ligang,Zhu Tao

Affiliation:

1. Dipartimento di Ingegneria dell’Informazione, Elettronica e Telecomunicazioni, Sapienza Università di Roma

2. CNR-INO, Istituto Nazionale di Ottica

Abstract

Characterization of the state of polarization (SOP) of ultrafast laser emission is relevant in several application fields such as field manipulation, pulse shaping, testing of sample characteristics, and biomedical imaging. Nevertheless, since high-speed detection and wavelength-resolved measurements cannot be simultaneously achieved by commercial polarization analyzers, single-shot measurements of the wavelength-resolved SOP of ultrafast laser pulses have rarely been reported. Here, we propose a method for single-shot, wavelength-resolved SOP measurements that exploits the method of division-of-amplitude under far-field transformation. A large accumulated chromatic dispersion is utilized to time-stretch the laser pulses via dispersive Fourier transform, so that spectral information is mapped into a temporal waveform. By calibrating our test matrix with different wavelengths, wavelength-resolved SOP measurements are achieved, based on the division-of-amplitude approach, combined with high-speed opto-electronic processing. As a proof-of-concept demonstration, we reveal the complex wavelength-dependent SOP dynamics in the build-up of dissipative solitons. The experimental results show that the dissipative soliton exhibits far more complex wavelength-related polarization dynamics, which are not shown in single-shot spectrum measurement. Our method paves the way for single-shot measurement and intelligent control of ultrafast lasers with wavelength-resolved SOP structures, which could promote further investigations of polarization-related optical signal processing techniques, such as pulse shaping and hyperspectral polarization imaging.

Funder

National Natural Science Foundation of China

Graduate Research and Innovation Foundation of Chongqing, China

National Science Fund for Distinguished Young Scholars

European Union’s Horizon 2020 Research and Innovation Programme

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3