Affiliation:
1. Rose-Hulman Institute of Technology
2. University of Wisconsin-Madison
Abstract
Non-line-of-sight (NLOS) imaging systems involve the measurement of an optical signal at a diffuse surface. A forward model encodes the physics of these measurements mathematically and can be inverted to generate a reconstruction of the hidden scene. Some existing NLOS imaging techniques rely on illuminating the diffuse surface and measuring the photon time of flight (ToF) of multi-bounce light paths. Alternatively, some methods depend on measuring high-frequency variations caused by shadows cast by occluders in the hidden scene. While forward models for ToF-NLOS and Shadow-NLOS have been developed separately, there has been limited work on unifying these two imaging modalities. Dove et al introduced a unified mathematical framework capable of modeling both imaging techniques [Opt. Express 27, 18016 (2019)10.1364/OE.27.018016]. The authors utilize this general forward model, known as the two frequency spatial Wigner distribution (TFSWD), to discuss the implications of reconstruction resolution for combining the two modalities but only when the occluder geometry is known a priori. In this work, we develop a graphical representation of the TFSWD forward model and apply it to novel experimental setups with potential applications in NLOS imaging. Furthermore, we use this unified framework to explore the potential of combining these two imaging modalities in situations where the occluder geometry is not known in advance.
Funder
Air Force Office of Scientific Research
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献