Abstract
Freeform Fresnel optics represent an emerging category of modern optics that reproduces powerful optical functionalities while maintaining an ultra-compact volume. The existing ultra-precision machining (UPM) technique faces technical challenges in meeting the fabrication requirements for freeform Fresnel optics because of the absence of appropriate geometry definition and corresponding tool path planning strategy to overcome the extreme asymmetry and discontinuity. This study proposes a new scheme for ultra-precision machining using four axes (X, Y, Z, C) to fabricate freeform Fresnel optics, including a general geometry description for freeform Fresnel optics, the quasi-spiral tool path generation strategy to overcome the lack of rotary symmetry, and the adaptive tool pose manipulation method for avoiding tool interference. In addition, the tool edge compensation and the adaptive timestep determination are also introduced to enhance the performance and efficiency of the proposed scheme. The machining of two exemplary freeform Fresnel lenses is successfully demonstrated. Overall, this study introduces a comprehensive routine for the fabrication of freeform Fresnel optics and proposes the adaptive tool pose manipulation scheme, which has the potential for broader applications in the ultra-precision machining of complex or discontinuous surfaces.
Funder
National Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献