Affiliation:
1. University of Chinese Academy of Sciences
2. South China Sea Institute of Oceanology
3. Sun Yat-sen University
Abstract
High optical complexity caused by the variability of marine particles poses a major challenge to the development of bio-optical algorithms for particulate organic carbon (POC) concentration retrievals from optical measurements in coastal waters. Here, we developed a particle composition-specific approach to estimate POC off the coastal areas of Guangdong and eastern Hainan Island, China. The ratio of phytoplankton absorption to detritus absorption coefficient aph(443)/ad(443) was used to optically discriminate water types. The samples with aph(443)/ad(443) ≤ 4.9 showed a significant correlation between POC and absorption line height at 676 nm aLH(676) (R2 = 0.75, n = 70, p < 0.01). In contrast, aph-dominant samples with aph(443)/ad(443) > 4.9 had a high covariance between POC and particle scattering coefficient at 675 nm bp(675) (R2 = 0.85, n = 37, p < 0.01). Validation with an independent dataset yielded a small positive bias (R2 = 0.81, APD = 23.10%, RMSE = 29.01 mg m–3, RPD = 16.31%). The approach provided a better estimation of POC concentration in coastal waters compared with univariate algorithms. A depth-resolved index aLH(676)/bbp(442) was defined as the ratio of absorption line height to particle backscattering coefficient. Using the depth-resolved index instead of aph(443)/ad(443) for optical water type classification can be utilized to represent the vertical variations of POC in 1 m bins, and can complement remote sensing observations to accurately characterize the three-dimensional structure of POC distribution in the oceans.
Funder
Science and Technology Planning Project of Guangzhou Nansha District Guangzhou City China
National Natural Science Foundation of China
Science and Technology Fundamental Resources Investigation Program
Guangdong Basic and Applied Basic Research Foundation