Affiliation:
1. Beijing University of Posts and Telecommunications
Abstract
Owing to the high integration, reconfiguration and strong robustness, Mach-Zehnder interferometers (MZIs) based optical neural networks (ONNs) have been widely considered. However, there are few works adding bias, which is important for neural networks, into the ONNs and systematically studying its effect. In this article, we propose a tunable-bias based optical neural network (TBONN) with one unitary matrix layer, which can improve the utilization rate of the MZIs, increase the trainable weights of the network and has more powerful representational capacity than traditional ONNs. By systematically studying its underlying mechanism and characteristics, we demonstrate that TBONN can achieve higher performance by adding more optical biases to the same side beside the inputted signals. For the two-dimensional dataset, the average prediction accuracy of TBONN with 2 biases (97.1%) is 5% higher than that of TBONN with 0 biases (92.1%). Additionally, utilizing TBONN, we propose a novel optical deep Q network (ODQN) algorithm to complete path planning tasks. By implementing simulated experiments, our ODQN shows competitive performance compared with the conventional deep Q network, but accelerates the computation speed by 2.5 times and 4.5 times for 2D and 3D grid worlds, respectively. Further, a more noticeable acceleration will be obtained when applying TBONN to more complex tasks. Also, we demonstrate the strong robustness of TBONN and the imprecision elimination method by using on-chip training.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
State Key Laboratory of Information Photonics and Optical Communications
BUPT Innovation and Entrepreneurship Support Program
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献