Affiliation:
1. Provincial Key Laboratory for Information Technology of Wisdom Mining of Shandong Province
Abstract
Underwater optical images often have serious quality degradations and distortions, which hinders the development of underwater optics and vision systems. Currently, there are two mainstream solutions: non-learning based and learning-based. Both have their advantages and disadvantages. To fully integrate the advantages of both, we propose an enhancement method based on superresolution convolutional neural network (SRCNN) and perceptual fusion. First, we introduce a weighted fusion BL estimation model with a saturation correction factor (SCF-BLs fusion), the accuracy of image prior information is improved effectively. Next, a refined underwater dark channel prior (RUDCP) is proposed, which combines guided filtering and an adaptive reverse saturation map (ARSM) to restore the image, which not only preserves edge details but also avoids the interference of artificial light. Then, the SRCNN fusion adaptive contrast enhancement is proposed to enhance the colour and contrast. Finally, to further enhance image quality, we employ efficient perceptual fusion to blend the different resulting outputs. Extensive experiments demonstrate that our method has outstanding visual results in underwater optical image dehazing, color enhancement and is artefact- and halo-free.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献