Affiliation:
1. Shanghai Aerospace Electronic Technology Institute
Abstract
This Letter proposes an optical-pulse-based reconfigurable phase control method, enabling a dual-band phased array receiver to operate in two modes: dual-band-independent operation and dual-band fusion. The method utilizes optical pulses and optical delay to compensate for phase differences across frequency bands. An electrical phase shifter is employed to compensate for phase residual in both bands. All phase operations to both bands are processed concurrently in one link, thereby maintaining inter-band phase coherence. Experimental results verify the ability of dual-band-independent beamforming and inter-band phase coherence maintaining. A four-channel dual-band (X- and Ku-band) phased array antenna (PAA) receiver is constructed to measure PAA patterns and demonstrate band fusion. The pulse compression results in all directions reveal a doubled improvement in range resolution, which shows the potential for enhancement of radar performance.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Shanghai Sailing Program