End-to-end integrated pipeline for underwater optical signal detection using 1D integral imaging capture with a convolutional neural network

Author:

Huang Yinuo,Krishnan Gokul,O’Connor Timothy1ORCID,Joshi RakeshORCID,Javidi BahramORCID

Affiliation:

1. University of Connecticut

Abstract

Underwater optical signal detection performance suffers from occlusion and turbidity in degraded environments. To tackle these challenges, three-dimensional (3D) integral imaging (InIm) with 4D correlation-based and deep-learning-based signal detection approaches have been proposed previously. Integral imaging is a 3D technique that utilizes multiple cameras to capture multiple perspectives of the scene and uses dedicated algorithms to reconstruct 3D images. However, these systems may require high computational requirements, multiple separate preprocessing steps, and the necessity for 3D image reconstruction and depth estimation of the illuminating modulated light source. In this paper, we propose an end-to-end integrated signal detection pipeline that uses the principle of one-dimensional (1D) InIm to capture angular and intensity of ray information but without the computational burden of full 3D reconstruction and depth estimation of the light source. The system is implemented with a 1D camera array instead of 2D camera array and is trained with a convolutional neural network (CNN). The proposed approach addresses many of the aforementioned shortcomings to improve underwater optical signal detection speed and performance. In our experiment, the temporal-encoded signals are transmitted by a light-emitting diode passing through a turbid and partial occluded environment which are captured by a 1D camera array. Captured video frames containing the spatiotemporal information of the optical signals are then fed into the CNN for signal detection without the need for depth estimation and 3D scene reconstruction. Thus, the entire processing steps are integrated and optimized by deep learning. We compare the proposed approach with the previously reported depth estimated 3D InIm with 3D scene reconstruction and deep learning in terms of computational cost at receiver’s end and detection performance. Moreover, a comparison with conventional 2D imaging is also included. The experimental results show that the proposed approach performs well in terms of detection performance and computational cost. To the best of our knowledge, this is the first report on signal detection in degraded environments with computationally efficient end-to-end integrated 1D InIm capture stage with integrated deep learning for classification.

Funder

U.S. Department of Education

Air Force Office of Scientific Research

Office of Naval Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3