Data augmentation using continuous conditional generative adversarial networks for regression and its application to improved spectral sensing

Author:

Zhu Yuhao,Su Haoyu,Xu Pengsheng,Xu Yuxin,Wang Yujie,Dong Chun-Hua1ORCID,Lu Jin2,Le Zichun2ORCID,Yang Xiaoniu2,Xuan Qi2,Zou Chang-Ling1ORCID,Ren Hongliang2

Affiliation:

1. University of Science and Technology of China

2. Zhejiang University of Technology

Abstract

Machine learning-assisted spectroscopy analysis faces a prominent constraint in the form of insufficient spectral samples, which hinders its effectiveness. Meanwhile, there is a lack of effective algorithms to simulate synthetic spectra from limited samples of real spectra for regression models in continuous scenarios. In this study, we introduced a continuous conditional generative adversarial network (CcGAN) to autonomously generate synthetic spectra. The labels employed for generating the spectral data can be arbitrarily selected from within the range of labels associated with the real spectral data. Our approach effectively produced spectra using a small spectral dataset obtained from a self-interference microring resonator (SIMRR)-based sensor. The generated synthetic spectra were subjected to evaluation using principal component analysis, revealing an inability to discern them from the real spectra. Finally, to enhance the DNN regression model, these synthetic spectra are incorporated into the original training dataset as an augmentation technique. The results demonstrate that the synthetic spectra generated by CcGAN exhibit exceptional quality and significantly enhance the predictive performance of the DNN model. In conclusion, CcGAN exhibits promising potential in generating high-quality synthetic spectra and delivers a superior data augmentation effect for regression tasks.

Funder

Horizontal projects of public institution

State Key Laboratory of Advanced Optical Communication Systems and Networks

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3