Abstract
At present, a real objects-based full-color holographic system usually uses a digital single-lens reflex (DSLR) camera array or depth camera to collect data. It then relies on a spatial light modulator to modulate the input light source for the reconstruction of the 3-D scene of the real objects. However, the main challenges the high-quality holographic 3-D display faced were the limitation of generation speed and the low accuracy of the computer-generated holograms. This research generates more effective and accurate point cloud data by developing an RGB-D salient object detection model in the acquisition unit. In addition, a divided point cloud gridding method is proposed to enhance the computing speed of hologram generation. In the RGB channels, we categorized each object point into depth grids with identical depth values. The depth girds are divided into M × N parts, and only the effective parts will be calculated. Compared with traditional methods, the calculation time is dramatically reduced. The feasibility of our proposed approach is established through experiments.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
China Postdoctoral Science Foundation
Natural Science Research of Jiangsu Higher Education Institutions of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献