Probing natural gas components with Raman integrating sphere technology

Author:

Li Fabing,Zhao Qiannan1,Sun Chenglin,Zhu Lin1,Xia Jie2,Huang Baokun1

Affiliation:

1. Jiangsu Ocean University

2. Xi’an Geosteering and Logging Company

Abstract

Raman spectroscopy is a powerful method of probing natural gas components, but higher sensitivity, greater miniaturization, and lower cost techniques are required. Therefore, we designed a Raman integrating sphere-enhanced spectroscopy technology in a volume of 40 × 40 × 20 cm3 based on the principle of integrating sphere reflection. This technology consists of two parts: the first is an integrating sphere model to collect scattered signals, and the second is a right-angle light-boosting system to increase the optical path of the pump light in the sample. Raman integrating sphere technology has a detection limit of 0.5 ppm in the air with an exposure time of 600 s under room temperature and ambient pressure conditions. Experiments of natural gas detection display that the detection limits of ethane, propane, n-butane, isobutane, n-pentane, and isopentane are 28, 28, 95, 28, 189, and 95 ppm, respectively. In addition, there is a linear relationship between the relative Raman intensity and the concentration of each component in natural gas, which can be used as a probe for detecting unknown natural gas components in gas wells.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3