Optical mode localization sensing based on fiber-coupled ring resonators

Author:

Wang ShumengORCID,Pi Hailong,Feng Yu,Yan Jize

Abstract

Mode localization is widely used in coupled micro-electro-mechanical system (MEMS) resonators for ultra-sensitive sensing. Here, for the first time to the best of our knowledge, we experimentally demonstrate the phenomenon of optical mode localization in fiber-coupled ring resonators. For an optical system, resonant mode splitting happens when multiple resonators are coupled. Localized external perturbation applied to the system will cause uneven energy distributions of the split modes to the coupled rings, this phenomenon is called the optical mode localization. In this paper, two fiber-ring resonators are coupled. The perturbation is generated by two thermoelectric heaters. We define the normalized amplitude difference between the two split modes as: (TM1TM2)/TM1×100%. It is found that this value can be varied from 2.5% to 22.5% when the temperature are changed by the value from 0K to 8.5K. This brings a ∼ 2.4%/K variation rate, which is three orders of magnitude greater than the variation rate of the frequency over temperature changes of the resonator due to thermal perturbation. The measured data reach good agreement with theoretical results, which demonstrates the feasibility of optical mode localization as a new sensing mechanism for ultra-sensitive fiber temperature sensing.

Funder

Engineering and Physical Sciences Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3