Spin exchange optically pumped nuclear spin self compensation system for moving magnetoencephalography measurement

Author:

Chen Yao1ORCID,Zhao Libo,Ma Yintao,Yu MingzhiORCID,Wang Yanbin,Zhang Ning2ORCID,Wei Kai3,Jiang Zhuangde

Affiliation:

1. Xi’an Jiaotong University Suzhou Institute

2. Intelligent Perception Research Institute

3. Beihang University

Abstract

Recording moving magnetoencephalograms (MEGs ), in which a person’s head can move freely as the brain’s magnetic field is recorded, has been a key subject in recent years. Here, we describe a method based on an optically pumped atomic co-magnetometer (OPACM) for recording moving MEGs. In the OPACM, hyper-polarized nuclear spins produce a magnetic field that blocks the background fluctuation low-frequency magnetic field noise while the rapidly changing MEG signal is recorded. In this study, the magnetic field compensation was studied theoretically, and we found that the compensation is closely related to several parameters such as the electron spin magnetic field, nuclear spin magnetic field, and holding magnetic field. Furthermore, the magnetic field compensation was optimized based on a theoretical model . We also experimentally studied the magnetic field compensation and measured the responses of the OPACM to different magnetic field frequencies. We show that the OPACM clearly suppresses low-frequency (under 1 Hz) magnetic fields. However, the OPACM responses to magnetic field frequencies around the band of the MEG. A magnetic field sensitivity of 3 fT/Hz1/2 was achieved. Finally, we performed a simulation of the OPACM during utilization for moving MEG recording. For comparison, the traditional compensation system for moving MEG recording is based on a coil that is around 2 m in dimension , while our compensation system is only 2 mm in dimension .

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu

National Natural Science Foundation of China

Open Research Projects of Zhejiang Lab

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3