Affiliation:
1. Khulna University of Engineering and Technology
2. Bangladesh Army University of Engineering and Technology
3. Deakin University
Abstract
In this study, an ultra-wide range plasmonic refractive index sensor based on dual core photonic crystal fiber is suggested and analyzed numerically. The proposed design achieves fabrication feasibility by employing external sensing mechanism in which silver is deposited onto the flat outer surface of the fiber as plasmonic material. A thin layer of titanium oxide (TiO2) is considered on top of the silver layer for preventing its oxidation problem. The sensor attains identification of a vast array of analytes consisting a wide range of refractive indices of 1.10 – 1.45. It achieves a maximum spectral sensitivity of 24300 nm/RIU along with its corresponding resolution of 4.12 × 10−6 RIU. The maximum figure of merit of the sensor is 120 RIU−1. The sensor also supports amplitude interrogation approach and exhibits a maximum amplitude sensitivity of 172 RIU−1. The impact of the design parameters such as radius of air holes, polishing distance, thickness of silver and titanium oxide layers are investigated thoroughly. An ultra-wide detection range with high sensitivity, fabrication feasibility, and easy application make the sensor a potential candidate for detection of a wide array of bio-originated materials, chemicals, and other analytes.
Funder
University Grants Commission of Bangladesh
Khulna University of Engineering and Technology
Subject
Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献