Mid-infrared frequency combs and staggered spectral patterns in χ(2) microresonators

Author:

Amiune N.ORCID,Fan Z.1,Pankratov V. V.1,Puzyrev D. N.1,Skryabin D. V.1,Zawilski K. T.2,Schunemann P. G.2ORCID,Breunig I.3

Affiliation:

1. University of Bath

2. BAE Systems Inc.

3. Fraunhofer Institute for Physical Measurement Techniques IPM

Abstract

The potential of frequency comb spectroscopy has aroused great interest in generating mid-infrared frequency combs in the integrated photonic setting. However, despite remarkable progress in microresonators and quantum cascade lasers, the availability of suitable mid-IR comb sources remains scarce. Here, we generate mid-IR microcombs relying on cascaded three-wave-mixing for the first time. By pumping a CdSiP2 microresonator at 1.55 µm wavelength with a low power continuous wave laser, we generate χ(2) frequency combs at 3.1 µm wavelength, with a span of about 30 nm. We observe ordinary combs states with a line spacing of the free spectral range of the resonator, and combs where the sideband numbers around the pump and half-harmonic alternate, forming staggered patterns of spectral lines. Our scheme for mid-IR microcomb generation is compatible with integrated telecom lasers. Therefore, it has the potential to be used as a simple and fully integrated mid-IR comb source, relying on only one single material.

Funder

Horizon 2020 Framework Programme

Engineering and Physical Sciences Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mid infrared optical parametric oscillation and comb generation in whispering gallery resonators;High-Brightness Sources and Light-Driven Interactions Congress;2024

2. Walk-off-induced dissipative breathers and dissipative breather gas in microresonators;Physical Review A;2023-07-28

3. Pump Tuning of a Microresonator Mid-Infrared $\chi^{(2)}$ OPO and Microcomb Generation at $3.1\ \mu \mathrm{m}$ with CdSiP2;2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC);2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3