Abstract
Mode-order converters, transforming a given mode into the desired mode, have an important implication for the multimode division multiplexing technology. Considerable mode-order conversion schemes have been reported on the silicon-on-insulator platform. However, most of them can only convert the fundamental mode to one or two specific higher-order modes with low scalability and flexibility, and the mode conversion between higher-order modes cannot be achieved unless a total redesign or a cascade is carried out. Here, a universal and scalable mode-order converting scheme is proposed by using subwavelength grating metamaterials (SWGMs) sandwiched by tapered-down input and tapered-up output tapers. In this scheme, the SWGMs region can convert, TE
p
mode guided from a tapered-down taper, into a TE0-like-mode-field (TLMF) and vice versa. Thereupon, a TE
p
-to-TE
q
mode conversion can be realized by a two-step process of TE
p
-to-TLMF and then TLMF-to-TE
q
, where input tapers, output tapers, and SWGMs are carefully engineered. As examples, the TE0-to-TE1, TE0-to-TE2, TE0-to-TE3, TE1-to-TE2, and TE1-to-TE3 converters, with ultracompact lengths of 3.436-7.71 µm, are reported and experimentally demonstrated. Measurements exhibit low insertion losses of < 1.8 dB and reasonable crosstalks of < -15 dB over 100-nm, 38-nm, 25-nm, 45-nm, and 24-nm working bandwidths. The proposed mode-order converting scheme shows great universality/scalability for on-chip flexible mode-order conversions, which holds great promise for optical multimode based technologies.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Scientific Research Foundation of the Graduate School of Southeast University
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献