Anti-reflection metallic anode-enhanced performance of organic solar cells via cross coupling between Fabry–Perot cavity modes and microcavity modes

Author:

Jin Yu,Huang Zhongshen,Jiang Jingxian,Wu Zhijun,Li Xiaoyan,Gong Dongmei,Xiang Chunping1

Affiliation:

1. Jimei University

Abstract

An effective anti-reflection metallic anode with the structure of glass/dielectric2 /Ag (D1D2M) is demonstrated both in small-molecule (SM) and conjugated polymer (CP) organic solar cells (OSCs). The anti-reflection mechanism is investigated by the finite-difference time-domain numerical calculation method and the experimental method. By tuning the refractive index and the thickness of the D2 layer, the reflection light is confined in the Fabry–Perot (F-P) cavity modes, which effectively enhances the transmittance of the D1D2M anode in the wavelength range of 420 nm–800 nm. Compared with the conventional glass/Ag (D1M) anode, the experimental transmittance of the D1D2M anode is enhanced by 33.24% at a wavelength of 550 nm. By replacing the D1M anode with the D1D2M anode in the OSCs, the F-P cavity modes cross couple with the microcavity modes in the active layers. As a result, the absorption intensity is obviously increasing in a wide angle range ( 0 θ 85 ) in the wavelength ranges of 475 nm–650 nm and 540 nm–720 nm for the SM and CP OSCs, respectively. The short circuit current density and power conversion efficiency of the SM OSC is increased by 25.07% and 27.23%, respectively.

Funder

The Open Project Program of Fujian Key Laboratory of Light Propagation and Transformation

Natural Science Foundation of Fujian Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3