Transient triplet differential-based photoacoustic lifetime imaging with an automatic interleaved data acquisition method for improved scanning speed and stability

Author:

Wang Bo1,Xie Yang2,He Xiao1,Jiang Jinsheng1,Xiao Jiaying1,Chen Zeyu2

Affiliation:

1. Central South University

2. State Key Laboratory of High Performance Complex Manufacturing

Abstract

Transient triplet differential (TTD) based photoacoustic lifetime (PALT) imaging provides valuable means for background-free molecular imaging and mapping of the oxygen partial pressure (pO2) in deep tissues. However, the broad application of this method is hindered by its long scanning time, poor accuracy, and low stability. This is mainly because most PALT systems execute the three data acquisition sequences separately without automatic control and neglect the long-time fluctuation of the laser output. In this work, we have proposed a novel automatic interleaved data acquisition method for PALT. This new method not only improved the scanning efficiency but also eliminated the long-time fluctuations of laser pulse energy. Results show that this new method can significantly improve the system’s stability and help reduce the scanning time. With this new method, we obtained the 3D background-free TTD images for the first time. We also observed distinct hypoxia inside the tumor due to the high metabolic rate of cancer cells, demonstrating the high reliability of our proposed method. The proposed method in this work can significantly promote the application of PALT imaging in biomedical studies.

Funder

Natural Science Foundation of Hunan Province

Hunan Provincial Science and Technology Department

Distinguished Young Scholar Foundation of Hunan Province

Innovation-Driven Project of Central South University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3