Generation of high performance optical chirped pulse for distributed strain sensing application with high strain accuracy and larger measurement range

Author:

Wang Yuan1ORCID,Tovar Pedro1,Chen Liang1,Bao Xiaoyi1

Affiliation:

1. University of Ottawa

Abstract

A photonic approach for generating low frequency drifting noise, arbitrary and large frequency chirping rate (FCR) optical pulses based on the Kerr effect in the nonlinear optical fiber is theoretically analyzed and experimentally demonstrated. Due to the Kerr effect-induced sinusoidal phase modulation in the nonlinear fiber, high order Kerr pulse with a large chirping rate is generated. In the concept-proof experiments, the FCR of the mth Kerr pulse has been significantly improved by a factor of 2m+1. In addition, dynamic strain measurement along with a random fiber grating array (RFGA) sensor by using different order Kerr pulse is carried out for demonstrating a large strain measurement range with lower uncertainty sensing capability. Benefiting from the use of a single laser source and large FCR Kerr pulse, the system exhibits a 3.9 µɛ static strain measurable range, 0.24 µɛ measurement uncertainty by using −4th order Kerr pulse that has an FCR up to 0.8 GHz/ns. Note that the FCR of the chirped pulse could be further enhanced by using larger FCR chirped pulse seed or choosing higher order Kerr pulses.

Funder

Canada Research Chairs

Natural Sciences and Engineering Research Council of Canada

China Scholarship Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3