OPGW positioning and early warning method based on a Brillouin distributed optical fiber sensor and machine learning

Author:

Xia MengORCID,Tang Xiaohui,Wang Ying1,Li Can1,Wei Yong2,Zhang Jiaju2,Jiang TaofeiORCID,Dong YongkangORCID

Affiliation:

1. State Grid Information & Telecommunication Branch

2. Information and Communication Branch of State Grid Hebei Electric Power Co.

Abstract

A method of optical fiber composite overhead ground wire (OPGW) positioning based on a Brillouin distributed optical fiber sensor and machine learning is proposed. A distributed Brillouin optical time-domain reflectometry (BOTDR) and Brillouin optical time-domain analyzer (BOTDA) are designed, where the ranges of BOTDR and the BOTDA are 110 km and 125 km, respectively. An unsupervised machine learning method density-based spatial clustering of applications with noise (DBSCAN) is proposed to automatically identify the splicing point based on the Brillouin frequency shift (BFS) difference of adjacent sections. An adaptive parameter selection method based on k-distance is adapted to overcome the parameter sensitivity. The validity of the proposed DBSCAN algorithm is greater than 96%, which is evaluated by three commonly external validation indices with five typical BFS curves. According to the clustering results of different fiber cores and the tower schedule of the OPGW, the connecting towers are distinguished, which is proved as a 100% recognition rate. According to the identification results of different fiber cores of both the OPGW cables and tower schedule, the connecting towers can be distinguished, and the distributed strain information is extracted directly from the BFS to strain. The abnormal region is positioned and warned according to the distributed strain measurements. The method proposed herein significantly improves the efficiency of fault positioning and early warning, which means a higher operational reliability of the OPGW cables.

Funder

Science and Technology Project of State Grid

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3