D-shaped fiber optic plasmonic sensors using planar and grating structures of silver and gold: design and analysis

Author:

Kumar Shambhu,Maurya Jitendra BahadurORCID,Roumi Bita1ORCID,Abdi-Ghaleh Reza1ORCID,Prajapati Yogendra Kumar2ORCID

Affiliation:

1. University of Bonab

2. Motilal Nehru National Institute of Technology Allahabad

Abstract

In this paper, a D-shaped optical fiber plasmonic sensor using planar and grating structures of silver and gold metals is simulated using the finite element method under the wave optics module of COMSOL Multiphysics. Performance defining parameters are based on (i) the transmittance curve, viz., resonance wavelength (λ r ), shift in resonance wavelength (Δλ r ), minimum transmittance (Tmin), and bandwidth (BW), and (ii) on electric field distribution of a surface plasmon wave, viz., penetration depth (PD) and propagation length (PL) obtained for the considered sensor structures. It is found that gold gives wider BW than silver (e.g., at 1.39 refractive index of the sample: 480% for the planar case and 241% for the grating case), which deteriorates sensor performance by degrading detection accuracy. However, gold gives higher Δλ r than silver (at 1.40−1.39=0.01 change in refractive index of the sample: 18.33% for the planar case and 16.39% for the grating case), which improves sensor performance and enhances sensitivity. A grating slightly increases the BW and Δλ r for both gold and silver. Further, with respect to silver, the sensor that contains gold demonstrates higher PD (e.g., 22.32% at 1.39 refractive index of the sample for the planar case) and lower PL (e.g., 22.74% at 1.39 refractive index of sample for the planar case). A grating increases the PD (e.g., 10% for silver at 1.39 refractive index of the sample), whereas it decreases the PL (e.g., 8.73% for silver at 1.39 refractive index of the sample). Lower PL signifies the localization of the field, whereas higher PD enables the sensor to detect larger molecules. Therefore, the sensor with grating metals provides better sensitivity with reduced detection accuracy for the detection of comparatively larger molecules.

Funder

Science and Engineering Research Board

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3