Phase estimation via coherent and photon-catalyzed squeezed vacuum states

Author:

Zhao Zekun,Kang Qingqian1,Zhang Huan2,Zhao Teng,Liu Cunjin,Hu Liyun3

Affiliation:

1. Jiangxi Normal University Science and Technology College

2. Sun Yat-sen University

3. Institute for Military-Civilian Integration of Jiangxi Province

Abstract

The research focused on enhancing the measurement accuracy through the use of non-Gaussian states has garnered increasing attention. In this study, we propose a scheme to input the coherent state mixed with a photon-catalyzed squeezed vacuum state into the Mach-Zender interferometer to enhance phase measurement accuracy. The findings demonstrate that photon catalysis, particularly multi-photon catalysis, can effectively improve the phase sensitivity of parity detection and the quantum Fisher information. Moreover, the situation of photon losses in practical measurement was studied. The results indicate that external dissipation has a greater influence on phase sensitivity than the internal dissipation. Compared to input coherent state mixed with squeezed vacuum state, the utilization of coherent state mixed photon-catalyzed squeezed vacuum state, particularly the mixed multi-photon catalyzed squeezed vacuum state as input, can enhance the phase sensitivity and quantum Fisher information. Furthermore, the phase measurement accuracy can exceed the standard quantum limit, and even surpass the Heisenberg limit. This research is expected to significantly contribute to quantum precision measurement.

Funder

National Natural Science Foundation of China

Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province

Natural Science Foundation of Jiangxi Province

Jiangxi Provincial Key Laboratory of Advanced Electronic Materials and Devices

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3