Affiliation:
1. Pendar Technologies, LLC
Abstract
Quantum cascade lasers (QCLs) are ubiquitous mid-infrared sources owing to their flexible designs and compact footprints. Manufacturing multiwavelength QCL chips with high power levels and good beam quality is highly desirable for many applications. In this study, we demonstrate an λ ∼ 4.9 µm monolithic, wavelength beam-combined (WBC) infrared laser source by integrating on a single chip array of five QCL gain sections with an arrayed waveguide grating (AWG). Optical feedback from the cleaved facets enables lasing, whereas the integrated AWG locks the emission spectrum of each gain section to its corresponding input channel wavelength and spatially combines their signals into a single-output waveguide. Our chip features high peak power from the common aperture exceeding 0.6 W for each input channel, with a side-mode suppression ratio (SMSR) of over 27 dB when operated in pulsed mode. Our active/passive integration approach allows for a seamless transition from the QCL ridges to the AWG without requiring regrowth or evanescent coupling schemes, leading to a robust design. These results pave the way for the development of highly compact mid-IR sources suitable for applications such as hyperspectral imaging.
Funder
Naval Sea Systems Command
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献