355-nm direct-detection Doppler wind lidar for vertical atmospheric motion measurement

Author:

Ishii ShokenORCID,Kishibuchi Kodai,Takenaka Hideki,Jin Yoshitaka1,Nishizawa Tomoaki1,Sugimoto Nobuo1ORCID,Iwai Hironari2,Aoki Makoto2,Kawamura Seiji2,Okamoto Hajime3

Affiliation:

1. National Institute for Environmental Studies

2. National Institute of Information and Communications Technology

3. Kyushu University

Abstract

A compact and simple 355-nm direct-detection Doppler wind lidar (DDDWL) was developed to measure the line-of-sight (LOS) wind speed of the background atmosphere from atmospheric molecule return signals with and without aerosols and clouds. A receiver design with a Fabry–Perot etalon interferometer (FPEI) without an inside deposited step coating or fiber coupling is considered for the DDDWL using the double-edge technique. The receiver with the double-edge technique uses a FPEI and wedge prism to form a double-edge filter. The development of the double-edge filter in this combination is, to the best of our knowledge, an improvement at 355-nm wavelength. Considerations for the DDDWL receiver with a FPEI revealed that a full-angle light beam divergence into the FPEI and a working FPEI aperture are significant factors for the receiver design. Preliminary experimental evaluation demonstrated that the DDDWL had the potential of LOS wind speed measurements with a random error of less than 1 m/s when the signal-to-noise ratio was approximately 300. The DDDWL-measured vertical LOS wind speed profile was consistent with that of a 2-µm coherent Doppler wind lidar within the measurement error range. The preliminary experimental LOS wind measurement results demonstrated the capability of the DDDWL to measure low LOS wind speeds.

Funder

Japan Society for the Promotion of Science

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3