Temperature and strain sensitivities of a groove bonded fiber Bragg grating at room and cryogenic temperatures

Author:

Huang XiyongORCID,Davies MikeORCID,Moseley Dominic A.,Salazar Erica E.,Sanabria Charlie,Duke Owen,Ludbrook Bart M.,Badcock Rodney A.ORCID

Abstract

Optical fiber Bragg gratings (FBGs) are well suited for applications as temperature or/and strain sensors in harsh environments, e.g., detecting thermal hot spots in high-temperature superconductor (HTS) fusion energy magnets at cryogenic temperatures and high radiation environments. To maximize the signal-to-noise ratio (SNR) of the FBGs to a hot spot, we propose to have them mounted in V-shaped grooves of HTS’ copper former. To investigate the differences between different adhesives on transferring strain and heat in this configuration, five arrays of FBGs are mounted in the V-shaped grooves of a copper dog-bone using Scotch-Weld epoxy, Stycast 2850 FT, Apiezon N, and Loctite 5145 silicone. The copper is cycled through tensile forces in a modified universal tensile tester, subjected to a thermal cycle between 293 K and 77 K, and exposed to heat pulse propagations at 293 K and 80 K. The FBGs that are bonded using Stycast show the highest temperature and strain sensitivities at room and cryogenic temperatures. No major differences in the temperature and strain sensitivities have been found between Ormocer and polyimide coated FBGs. Apiezon N is found to transfer strain consistently well below 245 K, which is comparable with other bonding materials in the temperature range between 77 K and 110 K. The FBGs bonded with the four adhesives in the V-groove configurations are shown to have comparable SNRs to a temperature rise of 20 K at 80 K. This paper emphasizes the importance of maximizing the thermal strain transferred from the host material through the bonding agents to achieve high temperature sensitivity of FBGs.

Funder

Ministry of Business, Innovation and Employment

Catalyst Fund

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3