Affiliation:
1. Harbin Engineering University
2. City University of Hong Kong
Abstract
A Fabry-Pérot interferometer (FPI) with an asymmetric tapered structure and air microbubble with an ultrathin wall is designed for high-sensitivity strain measurement. The sensor contains an air microbubble formed by two single-mode fibers (SMF) prepared by fusion splicer arc discharge, and a taper is applied to one side of the air microbubble with a wall thickness of 3.6 µm. In this unique asymmetric structure, the microbubble is more easily deformed under stress, and the strain sensitivity of the sensor is up to 15.89 pm/µɛ as evidenced by experiments.The temperature sensitivity and cross-sensitivity of the sensor are 1.09 pm/°C and 0.069 µɛ/°C in the temperature range of 25-200°C, respectively, thus reducing the measurement error arising from temperature variations. The sensor has notable virtues such as high strain sensitivity, low-temperature sensitivity, low-temperature cross-sensitivity, simple and safe process preparation, and low cost. Experiments confirm that the sensor has good stability and repeatability, and it has high commercial potential, especially strain measurements in complex environments.
Funder
City University of Hong Kong
City University of Hong Kong Strategic Research Grant
Study Abroad returnees merit based Aid Foundation in Heilongjiang Province
China Postdoctoral Science Foundation
Natural Science Foundation of Heilongjiang Province
Local Universities Reformation and Development Personnel Training Supporting Project from Central Authorities
National Natural Science Foundation of China
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献