Affiliation:
1. Xidian University
2. National 111 Project Photoelectric Perception Science and Technology under Complex Environment
Abstract
The detection performance of infrared imaging systems during high-speed flight is significantly impacted by aero-optical and aero-thermal radiation effects. However, traditional numerical calculations struggle to balance accuracy and efficiency, and there is a lack of a comprehensive model for infrared imaging in an aerodynamic thermal environment. In this study, we propose a calculation method based on Cellular Automata (CA) ray tracing, which allows for parallel calculation of aero-optical and aero-thermal radiation effects by combining optical field transport rules with the cellular space obtained by interpolation under fluid-solid boundary constraints. Using this method, we extend the traditional imaging feature prediction model of the infrared imaging system to obtain an accurate characterization model of the full-chain imaging features adapted to the aerodynamic thermal environment. Finally, we investigate the characteristics of infrared multispectral imaging system in various spectral bands under the influence of aero-optical and aero-thermal radiation effects. With this full-chain imaging model, the key elements of the imaging system under aerodynamic thermal environment can be globally optimized.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献