Correlation-based view registration for 3D tomography

Author:

Chen Haiyan1,Ling Chen1,Wu Yue1ORCID,Gao Yu1,Li Yikai1

Affiliation:

1. Beijing Institute of Technology

Abstract

This study reports a new, to the best of our knowledge, view registration method that can achieve high-quality tomographic reconstruction in spite of a large view registration (VR) error. The correlation-based view registration (CBVR) method is a directional orientation modification method based on the cross-correlation between measured projections and ray-tracings generated from the reconstruction, which can reduce the gross VR error to moderate levels by iterations. In the CBVR method, a traditional multi-camera VR process is first performed, based on the sensitivity of the projections to the VR error, and are evaluated and quantified for all cameras. Afterward, the orientation of each camera is iteratively updated based on the cross-correlation of the measured projections and the ray-tracings generated from the reconstruction calculated through all other cameras. The CBVR is consecutively validated by numerical and experimental studies. Through a numerical study on a controlled phantom introduced with 2% Gaussian noise, the CBVR method is proved to be able to reduce the large VR error (up to 4.8°) to 0.2° as well as to reduce the reconstruction error to 6.7 % in 12 rounds of iterations, which is very close to that obtained without any VR error (6% caused by Gaussian noise only). The CBVR method is then demonstrated and validated by reconstructing a two-branch laminar flame. By implementing the method, the initial projection orientations are optimized from traditional multi-camera VR results within a range of ± 3 , leading to effectively improved tomographic reconstruction of flame chemiluminescence distribution.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

State Key Laboratory of Engines

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3