Strong coupling of excitons and electric/magnetic toroidal dipole modes in perovskite metasurfaces

Author:

Gao Chenggui12,You Shaojun3,Zhang Ying3,Zhou Chaobiao3ORCID,Xie Quan1

Affiliation:

1. Guizhou University

2. Guizhou Education University

3. Guizhou Minzu University

Abstract

Effective manipulation of the interactions between light and matter is crucial for the advancement of various high-performance optoelectronic devices. It is noted that the toroidal dipole resonance refers to an electromagnetic excitation that exists beyond the conventional understanding of electric and magnetic multipoles, which shows great potential for enhancing light-matter interactions. In this work, we investigate the strong coupling properties of electric toroidal dipole (ETD) and magnetic toroidal dipole (MTD) with excitons in (PEA)2PbI4 perovskite metasurfaces. The nanostructure consists of two identical nanobars on a SiO2 substrate, which support ETD and MTD responses. The strong coupling between ETD/MTD modes and perovskite excitons is achieved when adjusting oscillator strength f0, which can be charactered by the clearly anti-crossing behavior appeared in the transmission spectra. The Rabi splitting can be readily tuned by controlling f0. When f0 increases to 1.0, their Rabi splitting values reach as high as 371 meV and 300 meV, respectively. The proposed strong coupling between excitons and ETD/MTDs paves the way for large-scale, low-cost integrated polaritonic devices operating at room temperature.

Funder

National Natural Science Foundation of China

Guizhou Provincial Science and Technology Department

Science and Technology Innovation Team Project of Guizhou Colleges and Universities

Science and Technology Talent Support Project of the Department of Education in the Guizhou Province

The Growth Foundation for Young Scientists of Education Department of Guizhou Province

Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University

Research Fund for the Doctoral Program of Guizhou Education University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3