Abstract
LaInO3 (LIO) represents a new, to the best of knowledge, type of perovskite oxides for deep-ultraviolet (DUV) photodetection owing to the wide bandgap nature (∼5.0 eV) and the higher tolerance of defect engineering for tunable carrier transport. Here we fabricate fast-response DUV photodetectors based on epitaxial LIO thin films and demonstrate an effective strategy for balancing the photodetector performance using the oxygen growth pressure as a simple control parameter. Increasing the oxygen pressure is effective to suppress the oxygen vacancy formation in LIO, which is beneficial to suppress the dark current and enhance the response speed. The optimized LIO photodetector achieves a fast rise/fall time of 20 ms/73 ms, a low dark current of 2.0 × 10−12 A, a photo-to-dark current ratio of 1.2 × 103, and a detectivity of 6 × 1012 Jones.
Funder
Ningbo Yongjiang Talent Introduction Programme
Ningbo Key Scientific and Technological Project
China Postdoctoral Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献