Temperature-dependent electroluminescence of red high-In-content MQWs of dual-wavelength micro-LED

Author:

Shan Xinyi,Li Yanzhe,Yu Huabin1,Lin Runze,Tan Cuili,Wang Rui1,Luo Yuanmin1,Cui Xugao,Liu Ran,Tian PengfeiORCID

Affiliation:

1. University of Science and Technology of China

Abstract

Temperature-dependent electroluminescence (TDEL) measurements have been employed to investigate the carrier transport and recombination processes of InGaN red micro-LED based on dual-wavelength InGaN/GaN MQWs structure. EL peak energy and carrier transport of the red micro-LED both show temperature dependence, due to temperature-induced changes in defect activation. In addition, the current density at which the blue peak of the low-In-content appears in the EL spectrum varies with temperature. As the temperature increases, the blue peak of the low In component tends to appear at higher current densities, which may be attributed to the increase in thermally activated defects hindering the injection of holes into the low-In-content MQWs further away from p-GaN. Furthermore, the IQEs of the high-In-content MQWs are estimated from the TDEL method and then reveal the temperature-dependent efficiency droop. The IQE decreases as temperature increases, particularly above 50 K, where it drops sharply due to temperature-dependent nonradiative recombination. And the two different variation trends in IQE of MQWs with high and low In content reveal a competitive mechanism in carrier distribution, implying that more escaping holes from high-In-content MQWs will further reduce red emission efficiency but enhance carrier injection and blue emission in low-In-content MQWs.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3