Affiliation:
1. National University of Defense Technology
2. Advanced Laser Technology Laboratory of Anhui Province
Abstract
Photoelectric imaging systems typically employ a focal plane detector structure, rendering them vulnerable to laser damage. Laser damage can severely impair or even completely deprive the information acquisition capability of photoelectric imaging systems. A laser damage protection method based on a microlens array light field imaging system is proposed to prevent photoelectric imaging systems from laser damage. The technique utilizes the light field modulation effect of the microlens array to homogenize the spot energy, thereby reducing the maximum single-pixel receiving power at the image sensor. The method’s effectiveness has been verified through numerical simulations and experimental validation. First, the laser transmission theoretical model of light field imaging is proposed. Then an experimental setup is established, and measurements are conducted to capture the spot profiles and intensity distributions on the imaging plane across various defocus distances. Finally, the impact of the propagation distance on the maximum single-pixel receiving power and suppression ratio of the light field imaging system is experimentally measured. The simulation and experimental results indicate that, with the proposed method, the energy suppression ratio can easily reach two orders of magnitude, significantly reducing the probability of laser damage in photoelectric imaging systems.
Funder
Technology Domain Fund of Basic Strengthening Plan
CAST Creative Foundation
Research Project of National University of Defense Technology
Advanced Laser Technology Laboratory Foundation of Anhui Province
Young Doctor’s Fund of Electronic Countermeasure College of National University of Defense Technology
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献