Affiliation:
1. Zhejiang University
2. KTH Royal Institute of Technology
3. RISE Research Institutes of Sweden
4. Zhejiang Lab
Abstract
Current perception and monitoring systems, such as human recognition, are affected by several environmental factors, such as limited light intensity, weather changes, occlusion of targets, and public privacy. Human recognition using radar signals is a promising direction to overcome these defects; however, the low signal-to-noise ratio of radar signals still makes this task challenging. Therefore, it is necessary to use suitable tools that can efficiently deal with radar signals to identify targets. Reservoir computing (RC) is an efficient machine learning scheme that is easy to train and demonstrates excellent performance in processing complex time-series signals. The RC hardware implementation structure based on nonlinear nodes and delay feedback loops endows it with the potential for real-time fast signal processing. In this paper, we numerically study the performance of the optoelectronic RC composed of optical and electrical components in the task of human recognition with noisy micro-Doppler radar signals. A single-loop optoelectronic RC is employed to verify the application of RC in this field, and a parallel dual-loop optoelectronic RC scheme with a dual-polarization Mach–Zehnder modulator (DPol-MZM) is also used for performance comparison. The result is verified to be comparable with other machine learning tools, which demonstrates the ability of the optoelectronic RC in capturing gait information and dealing with noisy radar signals; it also indicates that optoelectronic RC is a powerful tool in the field of human target recognition based on micro-Doppler radar signals.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Zhejiang Lab
Vetenskapsrådet
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献