Affiliation:
1. The Hong Kong Polytechnic University
Abstract
As a combination of direct detection and coherent detection technologies, self-coherent detection has the advantages of low cost and optical field recovery ability. However, most of the self-coherent detection techniques are limited to single sideband (SSB) signals. Recently, carrier-assisted differential detection (CADD) has been proposed to realize complex-valued double sideband (DSB) signals, but it requires a high carrier-to-signal power ratio (CSPR) to mitigate the signal-to-signal beat interference (SSBI). Later, a more cost-effective symmetric CADD (S-CADD) has been proposed while the required CSPR is still high. In order to alleviate the high requirements of CSPR, we propose a scheme based on the joint of digital pre-distortion (DPD) at transmitter and clipping at receiver to further improve the S-CADD system performance. This joint processing can not only solve the problem of non-uniform distribution of subcarrier signal-to-noise ratio (SNR) caused by non-ideal transfer function, but also the error propagation problem caused by enhanced SSBI under low CSPR. After the validation of the 64 Gbaud 16-ary quadrature amplitude modulation (16-QAM) orthogonal frequency division multiplexing (OFDM) signal transmitted over 80 km standard single mode fiber (SSMF), the CSPR required by the proposed scheme to reach the 20% soft decision-forward error correction (SD-FEC) and 7% hard decision-forward error correction (HD-FEC) can be reduced by 1.3 dB and 2.8 dB, respectively, with a comparison of the conventional S-CADD. The results show the potential of the proposed scheme in the short-reach optical transmissions.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Guangdong Introducing Innovative and Entrepreneurial Teams of “The Pearl River Talent Recruitment Program”
Guangdong Guangxi Joint Science Key Foundation
Guangdong Basic and Applied Basic Research Foundation