Non-uniform line-of-sight measurements of nitric oxide using mid-infrared Faraday rotation spectroscopy

Author:

Zhu Ning,Song Zihao1,Wang Weitian,Chao XingORCID

Affiliation:

1. Tsinghua University

Abstract

Traditional absorption spectroscopy relies on detecting intensity variations along the line-of-sight to gauge average concentration and temperature. While methods like profile fitting and temperature binning offer insights into the non-uniformity of the path, they fall short of accurately capturing the precise spatial distribution with a single line-of-sight measurement. We propose a novel measurement scheme for non-uniformly distributed concentration of nitric oxide (NO) along the line-of-sight utilizing a single laser and path, by incorporating Faraday rotation spectroscopy with magnetic fields changing over time and space. We validate the proposed scheme by measuring a path of two regions in series with different NO concentrations, and comparing the measurement results with direct absorption spectroscopy of each respective region. In this work, the tuning range of the interband cascade laser used is from 1899.42 to 1900.97 cm−1, encompassing two sets of spectral lines corresponding to the 2Π1/2 and 2Π3/2 transitions of NO’s R(6.5). The average relative uncertainty in the concentration measurement for each region is estimated to be within 1.5%, with the concentration for individual absorption cells ranging from 0.2% to 0.8%.

Funder

National Key Research and Development Program of China

National Science and Technology Major Project

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3