Affiliation:
1. Nanjing University of Information Science & Technology
2. Beijing University of Posts and Telecommunications
3. Sun Yat-sen University
Abstract
In this paper, we propose a performance improvement of non-orthogonal multiple access (NOMA) with a three-dimensional (3D) constellation and a two-dimensional Inverse Fast Fourier Transform IFFT modulator (2D-IFFT) for the passive optical network (PON). Two kinds of 3D constellation mapping are designed for the generation of a three-dimensional NOMA (3D-NOMA) signal. Higher-order 3D modulation signals can be obtained by superimposing signals of different power levels by pair mapping. Successive interference cancellation (SIC) algorithm is implemented at the receiver to remove interference from different users. Compared with the traditional two-dimensional NOMA (2D-NOMA), the proposed 3D-NOMA can increase the minimum Euclidean distance (MED) of constellation points by 15.48%, which enhances the bit error rate (BER) performance of the NOMA. The peak-to-average power ratio (PAPR) of NOMA can be reduced by 2 dB. A 12.17 Gb/s 3D-NOMA transmission over 25 km single-mode fiber (SMF) is experimentally demonstrated. The results show that at the bit error rate (BER) of 3.8 × 10−3, the sensitivity gain of the high-power signals of the two proposed 3D-NOMA schemes is 0.7 dB and 1 dB compared with that of 2D-NOMA under the condition of the same rate. Low-power level signal also has 0.3 dB and 1 dB performance improvement. Compared with 3D orthogonal frequency-division multiplexing (3D-OFDM), the proposed 3D-NOMA scheme could potentially expand the number of users without obvious performance degradation. Due to its good performance, 3D-NOMA is a potential method for future optical access systems.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Jiangsu Provincial Key Research and Development Program
The Natural Science Foundation of the Jiangsu Higher Education Institutions of China
The Startup Foundation for Introducing Talent of NUIST
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献