Affiliation:
1. Hangzhou Dianzi University
2. Lunar Exploration and Space Engineering Center
3. Harbin Institute of Technology (Shenzhen)
Abstract
Deep-space optical communication has garnered increasing attention for its high data transfer rate, wide bandwidth, and high transmission speed. However, coronal plasma turbulence severely degrades optical signals during superior solar conjunction. In this study, we introduce the models for plasma density and generalized non-Kolmogorov turbulence power spectrum. Based on these models, we derive the variance of the phase fluctuations with the assistance of the Rytov theory in the weak turbulence regime involving various variables, such as turbulence outer scale, spectral index, relative fluctuation factor, and wavelength. Subsequently, we evaluate the bit error ratio (BER) performance of the deep-space optical communication system, considering phase fluctuations and intensity scintillations, under binary phase shift keying modulation. Numerical calculations reveal that small heliocentric distance, large relative fluctuation factor and spectral index, could induce severe phase fluctuations and high BER. Fortunately, the effects of the plasma irregularities on the BER performance can be mitigated by short optical wavelength under large outer scale.
Funder
National Natural Science Foundation of China
Key Research and Development Program of Zhejiang Province
Open Foundation of State Key Laboratory of Integrated Services Networks Xidian University
Pre-research Project on Civil Aerospace Technologies of CNSA
Frontier Scientific Research Program of Deep Space Exploration Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献