Optical information hiding for different surface images

Author:

Mi ZhaoKe1,Zhu YuSi2,Zhu YuPeng3,Zhang TianHao3,Huang Zhengzhong3,Wu Fengming3,Ke Changjun3,Ge SiQin3,Rong Lu4ORCID,Shi YiShi23ORCID

Affiliation:

1. Hebei University of Engineering

2. University of Chinese Academy of Sciences

3. Chinese Academy of Sciences

4. Beijing University of Technology

Abstract

Optical hiding often requires the selection of specific artificial optical components as carriers, which results in poor versatility of the carriers and high costs for the hiding system. To conceal secret information on different surfaces such as metal, wood, and paper, we propose an optical information hiding method. In this method, we use images of surfaces, whose grayscale histograms have the characteristic of symmetric distribution. Based on this characteristic, we first scramble the surface image, and then adjust part of the gray value of the surface image to the complementary value to embed the secret information into a scrambled surface image to generate a key image. In the extraction process, a projector is used to reproduce the scrambled surface image and the key image, which are then incoherently superimposed to extract the secret information using the human visual system. The extraction process does not require complex optical knowledge and is simple and feasible. Simulation experiments and optical experiments indicate that this method is applicable in practice and possesses good security and imperceptibility. Furthermore, we prove the reliability of this method by embedding secret information in different surface images, demonstrating the potential application of more surface images in the field of optical information hiding. Finally, we discuss the applicability of surface information images and analyze the imperceptibility of key images.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fusion Foundation of Research and Education of CAS

University of Chinese Academy of Sciences

Fundamental Research Funds for the Central Universities

Funded Project of Hebei Province Innovation Capability Improvement Plan, China

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3