Shipborne variable-FOV, dual-wavelength, polarized ocean lidar: design and measurements in the Western Pacific

Author:

Liu Qi1,Wu Songhua12ORCID,Liu Bingyi12,Liu Jintao1,Zhang Kailin1,Dai Guangyao1,Tang Junwu12,Chen Ge12

Affiliation:

1. Ocean University of China

2. Pilot National Laboratory for Marine Science and Technology (Qingdao)

Abstract

For the requirement of high-precision vertical profile of the polarization and optical properties of natural seawater, a ship-borne variable-FOV, dual-wavelength, polarized ocean lidar system is designed to obtain the volume linear depolarization ratio (VDR), color ratio and optical parameter profiles of seawater. With the high signal-to-noise ratio, which benefits from the high power (355 nm with 120 mJ, 532 nm with 200 mJ) solid-state laser and a photon counting recorder with a sampling rate of 1 GHz, the attenuated backscattered signal of seawater in the western Pacific campaign reaches to the depth of 50 m, where a plankton layer presents. The receiver of lidar is capable of switching to wide and narrow field of view (FOV), respectively, to obtain the lidar attenuation coefficient Klidar, which is in good agreement with the beam attenuation coefficient of seawater c with a narrow FOV and diffuse attenuation coefficient Kd with a wide FOV. Besides, the Klidar, and the VDR, at two wavelengths of 355 nm and 532 nm are compared to explore the possibility of multi-wavelength of laser application in the ocean lidar. The VDR and the color ratio profiles have a desirable correlation with the in-situ measurement of chlorophyll a (Chla) and chromophoric dissolved organic matter (CDOM) profiles, respectively. With the combination of the Klidar, the VDR and the color ratio profiles, measured in different regions and time periods during the campaign, the multi-wavelength and polarization lidar shows its potential to explore various ocean compositions, such as the ocean particles size shape, the species and vertical migration characteristics of planktons, and the profile distribution of the ocean compositions.

Funder

National Key Research and Development Program of China

Pilot National Laboratory for Marine Science and Technology

Key Technology Research and Development Program of Shandong

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3