Affiliation:
1. Infinera Unipessoal Lda
2. Instituto de Telecomunicações, Instituto Superior Técnico
3. Infinera
Abstract
The horseshoe topology is widely used to realize metro-aggregation networks, since it provides a natural fit to the hub-and-spoke traffic pattern present in the majority of these deployments, while enabling survivability against single link and hub failures. A filterless architecture can also be adopted to further reduce capital expenditure (CapEx) by replacing active elements, such as reconfigurable add/drop multiplexers, with simpler and passive splitters/combiners. Such an architecture can effectively host coherent-based point-to-multipoint (P2MP) transceivers enabled by digital subcarrier multiplexing (DSCM). Importantly, by carefully optimizing the deployment of amplifiers (location and gain) and splitters/combiners (type), it may be possible to reduce the total number of optical amplifiers required, further decreasing CapEx. This paper proposes an integer linear programming framework to optimize metro-aggregation filterless horseshoe networks, taking into account the specific requirements of DSCM-based P2MP coherent transceivers. The results indicate that a considerable reduction in amplifier count is possible while ensuring that end-to-end performance thresholds are met, which include the minimum required input power at the receivers, a maximum subcarrier input power difference at the hub’s receivers, and the minimum optical-signal-to-noise ratio.
Funder
H2020 Marie Skłodowska-Curie Actions
Engineering and Physical Sciences Research Council
European Commission
Fundação para a Ciência e a Tecnologia
Subject
Computer Networks and Communications
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献