Comparing Pr3+ and Nd3+ for deactivating the Er3+: 4I13/2 level in lanthanum titanate glass

Author:

Topper Brian1ORCID,Neumann Alexander,Wilke Stephen K.2ORCID,Youngman Randall E.3,Alrubkhi Abdulrahman2,Weber Richard2

Affiliation:

1. Clemson University

2. Materials Development, Inc.

3. Science and Technology Division

Abstract

Erbium lanthanum titanate glasses were prepared by levitation melting for the spectroscopic study of ways to promote the mid-infrared fluorescence. Two series of heavily erbium doped glasses (15 wt%) were prepared with the addition of either Pr3+ or Nd3+ in amounts relative to Er3+ of 0.05, 0.1, and 0.2. Both ions quench the lower Er3+ laser level with the Pr3+ doing so more rapidly. Although high co-dopant concentrations result in higher energy transfer, as clearly evidenced in upconversion and downconversion fluorescence measurements, the mid-infrared lifetime also suffers a reduction and, therefore, a balance must be struck in the co-dopant concentration. Lifetime and spectral measurements indicate that, at a fixed relative co-dopant amount, Pr3+ is more effective than Nd3+ at removing the bottleneck of the Er3+4I13/2 level. Moreover, consideration of the lifetimes alongside the absorption data of the individual ions indicates that despite the large absorption cross-section of Nd3+ at 808 nm, the concentration needed to yield more absorbed power than utilizing direct 976 nm excitation of Er3+ results in unfavorable lifetimes of the mid-infrared transition. In the end, Pr3+ prevails as the superior co-dopant in terms of the effects on fluorescence lifetimes as well as potential laser system design considerations. In a unique self-doping approach, a reducing melt atmosphere of Ar instead of O2 creates a small fraction of Ti3+. In 5Er2O3-12La2O3-83TiO2 glass, the presence of Ti3+ quenches the 4I13/2 emission about 2.6 times more than the 4I11/2 when lifetimes are compared to an O2 melt environment. As an additional means of increasing the mid-infrared emission, the effect of temperature on the mid- and near- infrared lifetimes of a lightly doped lanthanum titanate composition is investigated between 77-300 K. The mid-infrared lifetime increases by ∼30% while the near-infrared lifetime increases by ∼10%, which suggests in addition to co-doping, active cooling of the gain media will further enhance performance.

Funder

National Science Foundation

U.S. Department of Energy

National Aeronautics and Space Administration

Air Force Research Laboratory

Publisher

Optica Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3