Fabrication of a flexible stretchable hydrogel-based antenna using a femtosecond laser for miniaturization

Author:

Zhao Pingping1,Chen Tao1,Si Jinhai1,Shi Hongyu2ORCID,Hou Xun1

Affiliation:

1. Xi'an Jiaotong University

2. Xi’an Jiaotong University

Abstract

We demonstrated a new method of fabricating a stretchable antenna by injecting liquid metal (LM) into a femtosecond-laser-ablated embedded hydrogel microchannel, and realized miniaturization of a stretchable dipole antenna based on hydrogel substrate. Firstly, symmetrical microchannels with two equal and linear branches were formed by a femtosecond laser in the middle of a hydrogel substrate, and then were filled with LM by use of a syringe needle. Using this method, a stretchable LM-dipole antenna with each dimension of  24 mm × 0.6 mm × 0.2 mm separated by a 2-mm gap, was formed in the middle of a 70 mm × 12 mm × 7 mm hydrogel slab. Since the polyacrylamide (PAAm) hydrogel contained ∼ 95 wt % deionized water with a high permittivity of 79 in the 0.5 GHz - 1.5 GHz range, the hydrogel used to prepare the flexible antenna can be considered as distilled water boxes. Experiments and simulations showed that a 5-cm-long LM-dipole embedded in hydrogel resonated at approximately 927.5 MHz with an S11 value of about - 12.6 dB and omnidirectional radiation direction. Benefiting from the high permittivity of the hydrogel, the dipole length was downsized by about half compared with conventional polymer substrates at the same resonant frequency. By varying the applied strain from 0 to 48%, the resonant frequency of the hydrogel/LM dipole antenna can be tuned from 770.3 MHz to 927.0 MHz. This method provides a simple and scalable technique for the design and preparation of LM-pattern microstructures in hydrogels, and has potential applications in hydrogel-based soft electronic device.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3